[转帖][推荐]use_c引用的《基本算法正式稿》
高考考完了,把那篇不完整的基本算法的正式稿给大家,这是我准备noip2002时收集多方资料整理而成的。
第三章 基本算法模块
一、数论算法 1.求两数的最大公约数 function gcd(a,b:integer):integer; begin if b=0 then gcd:=a else gcd:=gcd (b,a mod b); end ;
2.求两数的最小公倍数 function lcm(a,b:integer):integer; begin if a<b then swap(a,b); lcm:=a; while lcm mod b>0 do inc(lcm,a); end;
3.素数的求法 A.小范围内判断一个数是否为质数: function prime (n: integer): Boolean; var I: integer; begin for I:=2 to trunc(sqrt(n)) do if n mod I=0 then begin prime:=false; exit; end; prime:=true; end;
B.判断longint范围内的数是否为素数(包含求50000以内的素数表): procedure getprime; var i,j:longint; p:array[1..50000] of boolean; begin fillchar(p,sizeof(p),true); p[1]:=false; i:=2; while i<50000 do begin if p then begin j:=i*2; while j<50000 do begin p[j]:=false; inc(j,i); end; end; inc(i); end; l:=0; for i:=1 to 50000 do if p then begin inc(l);pr[l]:=i; end; end;{getprime} function prime(x:longint):integer; var i:integer; begin prime:=false; for i:=1 to l do if pr>=x then break else if x mod pr=0 then exit; prime:=true; end;{prime}
二、图论算法 1.最小生成树 A.Prim算法: procedure prim(v0:integer); var lowcost,closest:array[1..maxn] of integer; i,j,k,min:integer; begin for i:=1 to n do begin lowcost:=cost[v0,i]; closest:=v0; end; for i:=1 to n-1 do begin {寻找离生成树最近的未加入顶点k} min:=maxlongint; for j:=1 to n do if (lowcost[j]<min) and (lowcost[j]<>0) then begin min:=lowcost[j]; k:=j; end; lowcost[k]:=0; {将顶点k加入生成树} {生成树中增加一条新的边k到closest[k]} {修正各点的lowcost和closest值} for j:=1 to n do if cost[k,j]<lwocost[j] then begin lowcost[j]:=cost[k,j]; closest[j]:=k; end; end; end;{prim}
B.Kruskal算法:(贪心) 按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。 function find(v:integer):integer; {返回顶点v所在的集合} var i:integer; begin i:=1; while (i<=n) and (not v in vset) do inc(i); if i<=n then find:=i else find:=0; end;
procedure kruskal; var tot,i,j:integer; begin for i:=1 to n do vset:=;{初始化定义n个集合,第I个集合包含一个元素I} p:=n-1; q:=1; tot:=0; {p为尚待加入的边数,q为边集指针} sort; {对所有边按权值递增排序,存于e中,e.v1与e.v2为边I所连接的两个顶点的序号,e.len为第I条边的长度} while p>0 do begin i:=find(e[q].v1);j:=find(e[q].v2); if i<>j then begin inc(tot,e[q].len); vset:=vset+vset[j];vset[j]:=[]; dec(p); end; inc(q); end; writeln(tot); end;
2.最短路径 A.标号法求解单源点最短路径: var a:array[1..maxn,1..maxn] of integer; b:array[1..maxn] of integer; {b指顶点i到源点的最短路径} mark:array[1..maxn] of boolean;
procedure bhf; var best,best_j:integer; begin fillchar(mark,sizeof(mark),false); mark[1]:=true; b[1]:=0;{1为源点} repeat best:=0; for i:=1 to n do If mark then {对每一个已计算出最短路径的点} for j:=1 to n do if (not mark[j]) and (a[i,j]>0) then if (best=0) or (b+a[i,j]<best) then begin best:=b+a[i,j]; best_j:=j; end; if best>0 then begin b[best_j]:=best;mark[best_j]:=true; end; until best=0; end;{bhf}
B.Floyed算法求解所有顶点对之间的最短路径: procedure floyed; begin for I:=1 to n do for j:=1 to n do if a[I,j]>0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路径上j的前驱结点} for k:=1 to n do {枚举中间结点} for i:=1 to n do for j:=1 to n do if a[i,k]+a[j,k]<a[i,j] then begin a[i,j]:=a[i,k]+a[k,j]; p[I,j]:=p[k,j]; end; end;
C. Dijkstra 算法: var a:array[1..maxn,1..maxn] of integer; b,pre:array[1..maxn] of integer; {pre指最短路径上I的前驱结点} mark:array[1..maxn] of boolean; procedure dijkstra(v0:integer); begin fillchar(mark,sizeof(mark),false); for i:=1 to n do begin d:=a[v0,i]; if d<>0 then pre:=v0 else pre:=0; end; mark[v0]:=true; repeat {每循环一次加入一个离1集合最近的结点并调整其他结点的参数} min:=maxint; u:=0; {u记录离1集合最近的结点} for i:=1 to n do if (not mark) and (d<min) then begin u:=i; min:=d; end; if u<>0 then begin mark[u]:=true; for i:=1 to n do if (not mark) and (a[u,i]+d[u]<d) then begin d:=a[u,i]+d[u]; pre:=u; end; end; until u=0; end;
3.计算图的传递闭包 Procedure Longlink; Var T:array[1..maxn,1..maxn] of boolean; Begin Fillchar(t,sizeof(t),false); For k:=1 to n do For I:=1 to n do For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]); End;
4.无向图的连通分量 A.深度优先 procedure dfs ( now,color: integer); begin for i:=1 to n do if a[now,i] and c=0 then begin {对结点I染色} c:=color; dfs(I,color); end; end;
B 宽度优先(种子染色法)
5.关键路径 几个定义: 顶点1为源点,n为汇点。 a. 顶点事件最早发生时间Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中Ve (1) = 0; b. 顶点事件最晚发生时间 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中 Vl(n) = Ve(n); c. 边活动最早开始时间 Ee, 若边I由<j,k>表示,则Ee = Ve[j]; d. 边活动最晚开始时间 El, 若边I由<j,k>表示,则El = Vl[k] – w[j,k]; 若 Ee[j] = El[j] ,则活动j为关键活动,由关键活动组成的路径为关键路径。 求解方法: a. 从源点起topsort,判断是否有回路并计算Ve; b. 从汇点起topsort,求Vl; c. 算Ee 和 El;
6.拓扑排序 找入度为0的点,删去与其相连的所有边,不断重复这一过程。 例 寻找一数列,其中任意连续p项之和为正,任意q 项之和为负,若不存在则输出NO.
7.回路问题 Euler回路(DFS) 定义:经过图的每条边仅一次的回路。(充要条件:图连同且无奇点)
Hamilton回路 定义:经过图的每个顶点仅一次的回路。
一笔画 充要条件:图连通且奇点个数为0个或2个。
9.判断图中是否有负权回路 Bellman-ford 算法 x,y,t分别表示第I条边的起点,终点和权。共n个结点和m条边。 procedure bellman-ford begin for I:=0 to n-1 do d:=+infinitive; d[0]:=0; for I:=1 to n-1 do for j:=1 to m do {枚举每一条边} if d[x[j]]+t[j]<d[y[j]] then d[y[j]]:=d[x[j]]+t[j]; for I:=1 to m do if d[x[j]]+t[j]<d[y[j]] then return false else return true; end;
10.第n最短路径问题 *第二最短路径:每举最短路径上的每条边,每次删除一条,然后求新图的最短路径,取这些路径中最短的一条即为第二最短路径。 *同理,第n最短路径可在求解第n-1最短路径的基础上求解。
[此贴子已经被作者于2003-7-27 12:29:51编辑过] |